A better measure of relative prediction accuracy for model selection and model estimation
نویسنده
چکیده
Surveys show that the mean absolute percentage error (MAPE) is the most widely used measure of forecast accuracy in businesses and organizations. It is however, biased: When used to select among competing prediction methods it systematically selects those whose predictions are too low. This is not widely discussed and so is not generally known among practitioners. We explain why this happens. We investigate an alternative relative accuracy measure which avoids this bias: the log of the accuracy ratio: log (prediction / actual). Relative accuracy is particularly relevant if the scatter in the data grows as the value of the variable grows (heteroscedasticity). We demonstrate using simulations that for heteroscedastic data (modelled by a multiplicative error factor) the proposed metric is far superior to MAPE for model selection. Another use for accuracy measures is in fitting parameters to prediction models. Minimum MAPE models do not predict a simple statistic and so theoretical analysis is limited. We prove that when the proposed metric is used instead, the resulting least squares regression model predicts the geometric mean. This important property allows its theoretical properties to be understood.
منابع مشابه
Improvement of effort estimation accuracy in software projects using a feature selection approach
In recent years, utilization of feature selection techniques has become an essential requirement for processing and model construction in different scientific areas. In the field of software project effort estimation, the need to apply dimensionality reduction and feature selection methods has become an inevitable demand. The high volumes of data, costs, and time necessary for gathering data , ...
متن کاملComparing Different Marker Densities and Various Reference Populations Using Pedigree-Marker Best Linear Unbiased Prediction (BLUP) Model
In order to have successful application of genomic selection, reference population and marker density should be chosen properly. This study purpose was to investigate the accuracy of genomic estimated breeding values in terms of low (5K), intermediate (50K) and high (777K) densities in the simulated populations, when different scenarios were applied about the reference populations selecting. Af...
متن کاملModel Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series
Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...
متن کاملEvaluation of First and Second Markov Chains Sensitivity and Specificity as Statistical Approach for Prediction of Sequences of Genes in Virus Double Strand DNA Genomes
Growing amount of information on biological sequences has made application of statistical approaches necessary for modeling and estimation of their functions. In this paper, sensitivity and specificity of the first and second Markov chains for prediction of genes was evaluated using the complete double stranded DNA virus. There were two approaches for prediction of each Markov Model parameter,...
متن کاملApplication of Genetic Algorithm Based Support Vector Machine Model in Second Virial Coefficient Prediction of Pure Compounds
In this work, a Genetic Algorithm boosted Least Square Support Vector Machine model by a set of linear equations instead of a quadratic program, which is improved version of Support Vector Machine model, was used for estimation of 98 pure compounds second virial coefficient. Compounds were classified to the different groups. Finest parameters were obtained by Genetic Algorithm method ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JORS
دوره 66 شماره
صفحات -
تاریخ انتشار 2015